[1]
J. J. van Rood, “A proposal for international cooperation in organ transplantation: Eurotransplant,” in Histocompatibility testing 1967: Report of a conference and workshop, torino and saint-vincent, italy, 14–24 june 1967, R. Curtoni, P. Mattiuz, and R. Tosi, Eds., Copenhagen, Denmark, 1967, pp. 451–452.
[2]
Eurotransplant International Foundation, “Introduction,” in Together on a Life-Saving Mission: The World of Eurotransplant, Leiden, the Netherlands: Eurotransplant International Foundation, 2017, ch. 1, p. 7.
[3]
R. M. Langer, B. Cohen, and A. Rahmel,
“History of Eurotransplant,” Transplantation Proceedings, vol. 44, no. 7, pp. 2130–2131, 2012, doi:
10.1016/j.transproceed.2012.07.125.
[7]
B. J. J. M. Haase-Kromwijk, J. de Meester, and G. G. Persijn,
“Eurotransplant Foundation: The original framework of organ exchange,” Best Practice & Research Clinical Anaesthesiology, vol. 13, no. 2, pp. 169–178, 1999, doi:
10.1053/bean.1999.0018.
[8]
G. G. Persijn,
“Allocation of organs, particularly kidneys, within Eurotransplant,” Human Immunology, vol. 67, no. 6, pp. 419–423, 2006, doi:
10.1016/j.humimm.2006.03.008.
[9]
D. E. Schaubel
et al.,
“Survival benefit-based deceased-donor liver allocation,” American Journal of Transplantation, vol. 9, no. 4, pp. 970–981, 2009, doi:
10.1111/j.1600-6143.2009.02571.x.
[10]
G. G. Persijn, J. M. Smits, and U. Frei,
“Eurotransplant kidney allocation,” The Lancet, vol. 355, no. 9197, p. 71, 2000, doi:
10.1016/S0140-6736(05)72018-3.
[13]
J. de Meester, G. G. Persijn, J. M. Smits, and Y. Vanrenterghem,
“The new Eurotransplant kidney allocation system: A justified balance between equity and utility?” Transplant International, vol. 12, no. 4, pp. 299–300, 1999, doi:
10.1007/s001470050229.
[14]
J. de Meester
et al.,
“Which ABO-matching rule should be the decisive factor in the choice between a highly urgent and an elective patient?” Transplant International, vol. 15, no. 8, pp. 431–435, 2002, doi:
10.1007/s00147-002-0424-y.
[15]
J. de Meester, G. G. Persijn, T. Wujciak, G. Opelz, and Y. Vanrenterghem,
“The new Eurotransplant kidney allocation system: Report one year after implementation.” Transplantation, vol. 66, no. 9, pp. 1154–1159, 1998, doi:
10.1097/00007890-199811150-00007.
[17]
P. Glander
et al.,
“The ‘blood group O problem’ in kidney transplantation — time to change?” Nephrology Dialysis Transplantation, vol. 25, no. 6, pp. 1998–2004, 2010, doi:
10.1093/ndt/gfp779.
[19]
E. Allen, R. Taylor, A. Gimson, and D. Thorburn,
“Transplant benefit-based offering of deceased donor livers in the United Kingdom,” Journal of Hepatology, vol. 81, no. 3, pp. 471–478, 2024, doi:
10.1016/j.jhep.2024.03.020.
[20]
W. R. Kim
et al.,
“MELD 3.0: The Model for End-Stage Liver Disease updated for the modern era,” Gastroenterology, vol. 161, no. 6, pp. 1887–1895.e4, 2021, doi:
10.1053/j.gastro.2021.08.050.
[21]
J. G. O’Leary, R. Lepe, and G. L. Davis,
“Indications for liver transplantation,” Gastroenterology, vol. 134, no. 6, pp. 1764–1776, 2008, doi:
10.1053/j.gastro.2008.02.028.
[22]
V. Arroyo, R. Moreau, and R. Jalan,
“Acute-on-chronic liver failure,” New England Journal of Medicine, vol. 382, no. 22, pp. 2137–2145, 2020, doi:
10.1056/nejmra1914900.
[23]
P. R. Galle
et al.,
“EASL clinical practice guidelines: Management of hepatocellular carcinoma,” Journal of Hepatology, vol. 69, no. 1, pp. 182–236, 2018, doi:
10.1016/j.jhep.2018.03.019.
[25]
U. Jost and B. Ringe,
“Principles of Liver Allocation in Eurotransplant,” in
Procurement, Preservation and Allocation of Vascularized Organs, Springer Netherlands, 1997, ch. 23, pp. 201–207. doi:
10.1007/978-94-011-5422-2_23.
[26]
J. de Meester, B. J. J. M. Haase-Kromwijk, G. G. Persijn, and B. Cohen, “Organization and Logistics in Organ Exchange,” in Organ and Tissue Donation for Transplantation, London: Hodder Headline Group, 1997, ch. 12, pp. 226–238.
[27]
C. P. Strassburg, T. Becker, J. Klempnauer, and M. P. Manns,
“Lebertransplantation zwischen Indikation und Spenderallokation,” Der Internist, vol. 45, no. 11, pp. 1233–1245, 2004, doi:
10.1007/s00108-004-1295-3.
[28]
Eurotransplant, “Minutes of the March 2002 ELIAC Meeting,” Internal document, 2002.
[29]
G. E. Jung, J. Encke, J. Schmidt, and A. Rahmel,
“Model for End-Stage Liver Disease: Neue Grundlage der Allokation für die Lebertransplantation,” Der Chirurg, vol. 79, no. 2, pp. 157–163, 2008, doi:
10.1007/s00104-008-1463-4.
[30]
R. Wiesner
et al.,
“Model for End-Stage Liver Disease (MELD) and allocation of donor livers,” Gastroenterology, vol. 124, no. 1, pp. 91–96, 2003, doi:
10.1053/gast.2003.50016.
[31]
Eurotransplant, “Minutes of the January 2006 ELIAC Meeting,” Internal document, 2006.
[32]
Eurotransplant, “Minutes of the September 2001 ELIAC Meeting,” Internal document, 2001.
[33]
M. Malinchoc, P. S. Kamath, F. D. Gordon, C. J. Peine, J. Rank, and P. C. J. ter Borg,
“A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts,” Hepatology, vol. 31, no. 4, pp. 864–871, 2000, doi:
10.1053/he.2000.5852.
[34]
P. S. Kamath
et al.,
“A model to predict survival in patients with end-stage liver disease,” Hepatology, vol. 33, no. 2, pp. 464–470, 2001, doi:
10.1053/jhep.2001.22172.
[35]
I. Jochmans, M. van Rosmalen, J. Pirenne, and U. Samuel,
“Adult liver allocation in Eurotransplant,” Transplantation, vol. 101, no. 7, pp. 1542–1550, 2017, doi:
10.1097/TP.0000000000001631.
[36]
R. B. Freeman, R. H. Wiesner, J. P. Roberts, S. McDiarmid, D. M. Dykstra, and R. M. Merion,
“Improving liver allocation: MELD and PELD,” American Journal of Transplantation, vol. 4, pp. 114–131, 2004, doi:
10.1111/j.1600-6135.2004.00403.x.
[37]
W. R. Kim
et al.,
“Hyponatremia and mortality among patients on the liver-transplant waiting list,” The New England Journal of Medicine, vol. 359, no. 10, pp. 1018–1026, 2008, doi:
10.1056/NEJMoa0801209.
[38]
C. A. Moylan, C. W. Brady, J. L. Johnson, A. D. Smith, J. E. Tuttle-Newhall, and A. J. Muir,
“Disparities in liver transplantation before and after introduction of the MELD score,” JAMA, vol. 300, no. 20, pp. 2371–2378, 2008, doi:
10.1001/jama.2008.720.
[39]
R. Merion,
“Longitudinal assessment of mortality risk among candidates for liver transplantation,” Liver Transplantation, vol. 9, no. 1, pp. 12–18, 2003, doi:
10.1053/jlts.2003.50009.
[40]
P. Sharma, D. E. Schaubel, C. S. Sima, R. M. Merion, and A. S. F. Lok,
“Re-weighting the Model for End-Stage Liver Disease score components,” Gastroenterology, vol. 135, no. 5, pp. 1575–1581, 2008, doi:
10.1053/j.gastro.2008.08.004.
[41]
M. D. Leise, W. R. Kim, W. K. Kremers, J. J. Larson, J. T. Benson, and T. M. Therneau,
“A revised Model for End-Stage Liver Disease optimizes prediction of mortality among patients awaiting liver transplantation,” Gastroenterology, vol. 140, no. 7, pp. 1952–1960, 2011, doi:
10.1053/j.gastro.2011.02.017.
[42]
B. F. J. Goudsmit
et al.,
“Refitting the Model for End-Stage Liver Disease for the Eurotransplant region,” Hepatology, 2020, doi:
10.1002/hep.31677.
[43]
E. Nagler, H. Van Vlierberghe, I. Colle, R. Troisi, and B. de Hemptinne,
“Impact of MELD on short-term and long-term outcome following liver transplantation: A European perspective,” European Journal of Gastroenterology & Hepatology, vol. 17, no. 8, pp. 849–856, 2005, doi:
10.1097/00042737-200508000-00012.
[44]
T. J. Weismüller
et al.,
“The introduction of MELD-based organ allocation impacts 3-month survival after liver transplantation by influencing pretransplant patient characteristics,” Transplant International, vol. 22, no. 10, pp. 970–978, 2009, doi:
10.1111/j.1432-2277.2009.00915.x.
[45]
A. Attia, I. A. Rowe, E. M. Harrison, T. Gordon-Walker, and B. M. Stutchfield,
“Implausible algorithm output in UK liver transplantation allocation scheme: Importance of transparency,” The Lancet, vol. 401, no. 10380, pp. 911–912, 2023, doi:
10.1016/s0140-6736(23)00114-9.
[46]
A. Attia
et al.,
“Effect of recipient age on prioritisation for liver transplantation in the UK: A population-based modelling study,” The Lancet Healthy Longevity, vol. 5, no. 5, pp. e346–e355, 2024, doi:
10.1016/s2666-7568(24)00044-8.
[47]
A. B. Massie
et al.,
“MELD exceptions and rates of waiting list outcomes,” American Journal of Transplantation, vol. 11, no. 11, pp. 2362–2371, 2011, doi:
10.1111/j.1600-6143.2011.03735.x.
[48]
D. S. Goldberg, K. Krok, S. Batra, J. F. Trotter, S. M. Kawut, and M. B. Fallon,
“Impact of the hepatopulmonary syndrome MELD exception policy on outcomes of patients after liver transplantation: An analysis of the UNOS database,” Gastroenterology, vol. 146, no. 5, pp. 1256–1265.e1, 2014, doi:
10.1053/j.gastro.2014.01.005.
[49]
A. Pillai, T. Couri, and M. Charlton,
“Liver allocation policies in the USA: Past, present, and the future,” Digestive Diseases and Sciences, vol. 64, no. 4, pp. 985–992, 2019, doi:
10.1007/s10620-019-05549-y.
[50]
P. G. Northup, N. M. Intagliata, N. L. Shah, S. J. Pelletier, C. L. Berg, and C. K. Argo,
“Excess mortality on the liver transplant waiting list: Unintended policy consequences and Model for End-Stage Liver Disease (MELD) inflation,” Hepatology, vol. 61, no. 1, pp. 285–291, 2015, doi:
10.1002/hep.27283.
[51]
K. Bonner, R. Hirose, and J. K. Heimbach,
“The evolution of the national liver review board,” Current Transplantation Reports, vol. 5, no. 1, pp. 7–13, 2018, doi:
10.1007/s40472-018-0176-y.
[52]
J. C. Goet
et al.,
“Current policy for allocation of donor livers in the Netherlands advantages primary sclerosing cholangitis patients on the liver transplantation waiting list – a retrospective study,” Transplant International, vol. 31, no. 6, pp. 590–599, 2017, doi:
10.1111/tri.13097.
[53]
H. J. Metselaar, A. P. van den Berg, and M. J. Coenraad,
“Why we need fairer allocation rules for patients with hepatocellular carcinoma awaiting a liver transplant?” Transplant International, vol. 30, no. 11, pp. 1092–1094, 2017, doi:
10.1111/tri.12980.
[54]
A. Umgelter
et al.,
“Disparities in Eurotransplant liver transplantation wait-list outcome between patients with and without Model for End-Stage Liver Disease exceptions,” Liver Transplantation, vol. 23, no. 10, pp. 1256–1265, 2017, doi:
10.1002/lt.24805.
[55]
H. C. de Ferrante, M. van Rosmalen, B. M. L. Smeulders, S. Vogelaar, and F. C. R. Spieksma,
“Revising Model for End-Stage Liver Disease from calendar-time cross-sections with correction for selection bias,” BMC Medical Research Methodology, vol. 24, no. 1, 2024, doi:
10.1186/s12874-024-02176-8.
[56]
K. Bambha
et al.,
“Predicting survival among patients listed for liver transplantation: An assessment of serial MELD measurements,” American Journal of Transplantation, vol. 4, no. 11, pp. 1798–1804, 2004, doi:
10.1111/j.1600-6143.2004.00550.x.
[57]
Q. Gong and D. E. Schaubel,
“Partly conditional estimation of the effect of a time-dependent factor in the presence of dependent censoring,” Biometrics, vol. 69, no. 2, pp. 338–347, 2013, doi:
10.1111/biom.12023.
[59]
E. M. Schnellinger, E. Cantu, M. O. Harhay, D. E. Schaubel, S. E. Kimmel, and A. J. Stephens-Shields,
“Mitigating selection bias in organ allocation models,” BMC Medical Research Methodology, vol. 21, no. 1, 2021, doi:
10.1186/s12874-021-01379-7.
[60]
T. A. Gerds, M. W. Kattan, M. Schumacher, and C. Yu,
“Estimating a time-dependent concordance index for survival prediction models with covariate dependent censoring,” Statistics in Medicine, vol. 32, no. 13, pp. 2173–2184, 2012, doi:
10.1002/sim.5681.
[61]
N. Hartman,
“Concordance indices for risk scores with policy evaluations,” Health Services Research, 2025, doi:
10.1111/1475-6773.14619.
[62]
L. Lin, M. Sperrin, D. A. Jenkins, G. P. Martin, and N. Peek,
“A scoping review of causal methods enabling predictions under hypothetical interventions,” Diagnostic and Prognostic Research, vol. 5, no. 1, 2021, doi:
10.1186/s41512-021-00092-9.
[63]
M. Maziarz, P. Heagerty, T. Cai, and Y. Zheng,
“On longitudinal prediction with time-to-event outcome: Comparison of modeling options,” Biometrics, vol. 73, no. 1, pp. 83–93, 2017, doi:
10.1111/biom.12562.
[64]
H. C. de Ferrante, M. de Rosner-van Rosmalen, B. M. L. Smeulders, S. Vogelaar, and F. C. R. Spieksma,
“Sex disparity in liver allocation within Eurotransplant,” American Journal of Transplantation, vol. 25, no. 1, pp. 139–149, 2025, doi:
10.1016/j.ajt.2024.06.018.
[65]
A. K. Mathur, D. E. Schaubel, Q. Gong, M. K. Guidinger, and R. M. Merion,
“Sex-based disparities in liver transplant rates in the United States,” American Journal of Transplantation, vol. 11, no. 7, pp. 1435–1443, 2011, doi:
10.1111/j.1600-6143.2011.03498.x.
[66]
J. C. Lai, N. A. Terrault, E. Vittinghoff, and S. W. Biggins,
“Height contributes to the gender difference in wait-list mortality under the MELD-based liver allocation system,” American Journal of Transplantation, vol. 10, no. 12, pp. 2658–2664, 2010, doi:
10.1111/j.1600-6143.2010.03326.x.
[67]
J. E. Locke
et al.,
“Quantifying sex-based disparities in liver allocation,” JAMA Surgery, vol. 155, no. 7, p. e201129, 2020, doi:
10.1001/jamasurg.2020.1129.
[68]
E. C. Verna and J. C. Lai,
“Time for action to address the persistent sex-based disparity in liver transplant access,” JAMA Surgery, vol. 155, no. 7, p. 545, 2020, doi:
10.1001/jamasurg.2020.1126.
[69]
E. Cholongitas
et al.,
“Female liver transplant recipients with the same GFR as male recipients have lower MELD scores – a systematic bias,” American Journal of Transplantation, vol. 7, no. 3, pp. 685–692, 2007, doi:
10.1111/j.1600-6143.2007.01666.x.
[70]
M. L. Rodríguez-Perálvarez
et al.,
“Development and validation of the gender-equity model for liver allocation (GEMA) to prioritise candidates for liver transplantation: A cohort study,” The Lancet. Gastroenterology & Hepatology, vol. 8, no. 3, pp. 242–252, 2023, doi:
10.1016/S2468-1253(22)00354-5.
[71]
R. P. Myers, A. A. M. Shaheen, A. I. Aspinall, R. R. Quinn, and K. W. Burak,
“Gender, renal function, and outcomes on the liver transplant waiting list: Assessment of revised MELD including estimated glomerular filtration rate,” Journal of Hepatology, vol. 54, no. 3, pp. 462–470, 2011, doi:
10.1016/j.jhep.2010.07.015.
[72]
S. K. Asrani
et al.,
“MELD-GRAIL-Na: Glomerular filtration rate and mortality on liver-transplant waiting list,” Hepatology, vol. 71, no. 5, pp. 1766–1774, 2020, doi:
10.1002/hep.30932.
[73]
M. B. W. Costa, C. Gärtner, M. Schmidt, T. Berg, D. Seehofer, and T. Kaiser,
“Revising the MELD score to address sex-bias in liver transplant prioritization for a German cohort,” Journal of Personalized Medicine, vol. 13, no. 6, p. 963, 2023, doi:
10.3390/jpm13060963.
[74]
E. Cholongitas, M. Thomas, M. Senzolo, and A. K. Burroughs,
“Gender disparity and MELD in liver transplantation,” Journal of Hepatology, vol. 55, no. 2, pp. 500–501, 2011, doi:
10.1016/j.jhep.2011.01.054.
[75]
A. M. Allen
et al.,
“Reduced access to liver transplantation in women: Role of height, MELD exception scores, and renal function underestimation,” Transplantation, vol. 102, no. 10, pp. 1710–1716, 2018, doi:
10.1097/TP.0000000000002196.
[76]
D. Sneiders
et al.,
“Quantifying the disadvantage of small recipient size on the liver transplantation waitlist, a longitudinal analysis within the Eurotransplant region,” Transplantation, 2023, doi:
10.1097/tp.0000000000004804.
[77]
A. M. Lipsky and S. Greenland,
“Causal directed acyclic graphs,” JAMA, vol. 327, no. 11, pp. 1083–1084, 2022, doi:
10.1001/jama.2022.1816.
[78]
N. L. Wood, D. VanDerwerken, D. L. Segev, and S. E. Gentry,
“Correcting the sex disparity in MELD-Na,” American Journal of Transplantation, vol. 21, no. 10, pp. 3296–3304, 2021, doi:
10.1111/ajt.16731.
[79]
Q. Gong and D. E. Schaubel,
“Estimating the average treatment effect on survival based on observational data and using partly conditional modeling,” Biometrics, vol. 73, no. 1, pp. 134–144, 2017, doi:
10.1111/biom.12542.
[80]
I. R. White, P. Royston, and A. M. Wood,
“Multiple imputation using chained equations: Issues and guidance for practice,” Statistics in Medicine, vol. 30, no. 4, pp. 377–399, 2011, doi:
10.1002/sim.4067.
[81]
L. D. Nephew, D. S. Goldberg, J. D. Lewis, P. Abt, M. Bryan, and K. A. Forde,
“Exception points and body size contribute to gender disparity in liver transplantation,” Clinical Gastroenterology and Hepatology, vol. 15, no. 8, pp. 1286–1293.e2, 2017, doi:
10.1016/j.cgh.2017.02.033.
[82]
A. J. Kwong
et al.,
“OPTN/SRTR 2020 Annual Data Report: Liver,” American Journal of Transplantation, vol. 22, no. S2, pp. 204–309, 2022, doi:
10.1111/ajt.16978.
[83]
S. Bernards
et al.,
“Awarding additional MELD points to the shortest waitlist candidates improves sex disparity in access to liver transplant in the United States,” American Journal of Transplantation, vol. 22, no. 12, pp. 2912–2920, 2022, doi:
10.1111/ajt.17159.
[84]
H. C. de Ferrante, M. de Rosner-Van Rosmalen, B. M. L. Smeulders, F. C. R. Spieksma, and S. Vogelaar,
“A discrete event simulator for policy evaluation in deceased-donor liver allocation in eurotransplant,” Operations Research, Data Analytics and Logistics, vol. 45, p. 200476, Dec. 2025, doi:
10.1016/j.ordal.2025.200476.
[85]
A. A. B. Pritsker
et al.,
“Organ transplantation policy evaluation,” in
Proceedings of the 27th conference on winter simulation - WSC ’95, C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman, Eds., in WSC ’95. INFORMS, 1995, pp. 1314–1323. doi:
10.1145/224401.224813.
[86]
D. Thompson, L. Waisanen, R. Wolfe, R. M. Merion, K. McCullough, and A. Rodgers,
“Simulating the allocation of organs for transplantation,” Health Care Management Science, vol. 7, no. 4, pp. 331–338, 2004, doi:
10.1007/s10729-004-7541-3.
[87]
D. A. Axelrod
et al.,
“The economic implications of broader sharing of liver allografts,” American Journal of Transplantation, vol. 11, no. 4, pp. 798–807, 2011, doi:
10.1111/j.1600-6143.2011.03443.x.
[88]
S. E. Gentry
et al.,
“Addressing geographic disparities in liver transplantation through redistricting,” American Journal of Transplantation, vol. 13, no. 8, pp. 2052–2058, 2013, doi:
10.1111/ajt.12301.
[89]
A. Goel
et al.,
“Liver Simulated Allocation Modeling: Were the predictions accurate for Share 35?” Transplantation, vol. 102, no. 5, pp. 769–774, 2018, doi:
10.1097/TP.0000000000002079.
[90]
S. Akshat, S. E. Gentry, and S. Raghavan,
“Heterogeneous donor circles for fair liver transplant allocation,” Health Care Management Science, vol. 27, no. 1, pp. 20–45, 2024, doi:
10.1007/s10729-022-09602-7.
[91]
E. R. Perito
et al.,
“The impact of increased allocation priority for children awaiting liver transplant: A liver simulated allocation model (LSAM) analysis,” Journal of Pediatric Gastroenterology and Nutrition, vol. 68, no. 4, pp. 472–479, 2019, doi:
10.1097/MPG.0000000000002287.
[92]
J. K. Heimbach
et al.,
“Delayed hepatocellular carcinoma Model for End-Stage Liver Disease exception score improves disparity in access to liver transplant in the United States,” Hepatology, vol. 61, no. 5, pp. 1643–1650, 2015, doi:
10.1002/hep.27704.
[93]
F. Bayer
et al.,
“Removing administrative boundaries using a gravity model for a national liver allocation system,” American Journal of Transplantation, vol. 21, no. 3, pp. 1080–1091, 2021, doi:
10.1111/ajt.16214.
[94]
S. M. Shechter
et al.,
“A clinically based discrete-event simulation of end-stage liver disease and the organ allocation process,” Medical Decision Making, vol. 25, no. 2, pp. 199–209, 2005, doi:
10.1177/0272989X04268956.
[95]
J. Ratcliffe
et al.,
“A simulation modelling approach to evaluating alternative policies for the management of the waiting list for liver transplantation,” Health Care Management Science, vol. 4, no. 2, pp. 117–124, 2001, doi:
10.1023/a:1011405610919.
[97]
N. L. Wood
et al.,
“Liver Simulated Allocation Model does not effectively predict organ offer decisions for pediatric liver transplant candidates,” American Journal of Transplantation, vol. 21, no. 9, pp. 3157–3162, 2021, doi:
10.1111/ajt.16621.
[98]
N. Agarwal, I. Ashlagi, M. A. Rees, P. Somaini, and D. Waldinger,
“Equilibrium allocations under alternative waitlist designs: Evidence from deceased donor kidneys,” Econometrica, vol. 89, no. 1, pp. 37–76, 2021, doi:
10.3982/ECTA17017.
[99]
J. S. Carson,
“Verification and validation: A consultant’s perspective,” in
Proceedings of the 21st conference on Winter simulation, in
WSC ’89. New York, NY, USA, 1989, pp. 552–558. doi:
10.1145/76738.76810.
[100]
A. M. Law, “Variance-reduction techniques,” in Simulation Modeling and Analysis, Fifth edition., in McGraw-Hill series in industrial engineering and management science., Dubuque: McGraw-Hill Education, 2015, ch. 11, pp. 588–596.
[101]
N. A. Terrault, C. Francoz, M. Berenguer, M. Charlton, and J. Heimbach,
“Liver transplantation 2023: Status report, current and future challenges,” Clinical Gastroenterology and Hepatology, vol. 21, no. 8, pp. 2150–2166, 2023, doi:
10.1016/j.cgh.2023.04.005.
[102]
A. B. Massie
et al.,
“Early changes in liver distribution following implementation of Share 35,” American Journal of Transplantation, vol. 15, no. 3, pp. 659–667, 2015, doi:
10.1111/ajt.13099.
[103]
M. Ravaioli
et al.,
“Impact of MELD 30-allocation policy on liver transplant outcomes in Italy,” Journal of Hepatology, vol. 76, no. 3, pp. 619–627, 2022, doi:
10.1016/j.jhep.2021.10.024.
[104]
R. Vanholder
et al.,
“Fighting the unbearable lightness of neglecting kidney health: The decade of the kidney,” Clinical Kidney Journal, vol. 14, no. 7, pp. 1719–1730, 2021, doi:
10.1093/ckj/sfab070.
[105]
M. Tonelli
et al.,
“Systematic review: Kidney transplantation compared with dialysis in clinically relevant outcomes,” American Journal of Transplantation, vol. 11, no. 10, pp. 2093–2109, 2011, doi:
10.1111/j.1600-6143.2011.03686.x.
[107]
M. H. van Dorp,
“HLA & transplantatie: De ontwikkeling van een matchingspraktijk,” PhD thesis, University of Maastricht, 2001. doi:
10.26481/dis.20011116md.
[108]
S. Bak-Jensen,
“To share or not to share? institutional exchange of cadaver kidneys in Denmark,” Medical History, vol. 52, no. 1, pp. 23–46, 2008, doi:
10.1017/S0025727300002040.
[109]
J. Dausset and F. T. Rapaport,
“The HLA Story,” in
Immunology, R. B. Gallagher, J. Gilder, G. J. V. Nossal, and G. Salvatore, Eds., London: Academic Press, 1995, ch. 10, pp. 111–120. doi:
10.1016/B978-012274020-6/50011-8.
[110]
J. J. van Rood,
“Weighing optimal graft survival through HLA matching against the equitable distribution of kidney allografts,” New England Journal of Medicine, vol. 350, no. 6, pp. 535–536, 2004, doi:
10.1056/nejmp030011.
[111]
G. G. Persijn, B. W. Gabb, A. van Leeuwen, A. Nagtegaal, J. Hoogeboom, and J. J. van Rood,
“Matching for HLA of A, B, and DR loci in renal transplantation by Eurotransplant,” The Lancet, vol. 311, no. 8077, pp. 1278–1281, 1978, doi:
10.1016/s0140-6736(78)91266-7.
[113]
P. I. Terasaki
et al.,
“History of HLA: A personalized view,” in
History of HLA: Ten Recollections, UCLA Tissue Typing Laboratory, 1990, ch. 10, pp. 232–233. Available:
http://www.piterasaki.org/HistoryOfHLA.pdf
[114]
C. M. Kjellstrand,
“Age, sex, and race inequality in renal transplantation,” Archives of Internal Medicine, vol. 148, no. 6, p. 1305, 1988, doi:
10.1001/archinte.1988.00380060069016.
[116]
S. M. Greenstein
et al.,
“Evidence that zero antigen-matched cyclosporine-treated renal transplant recipients have graft survival equal to that of matched recipients. Reevaluation of points,” Transplantation, vol. 49, no. 2, pp. 332–336, 1990, doi:
10.1097/00007890-199002000-00021.
[117]
P. Harfmann, R. Dittmer, R. Busch, R. Arndt, H. Krämer-Hansen, and H. Huland,
“Renal transplantation using cyclosporine with and without regard to HLA matching: A randomized prospective unicenter study,” The Journal of Urology, vol. 142, no. 3, pp. 691–693, 1989, doi:
10.1016/S0022-5347(17)38854-7.
[118]
G. Opelz,
“Correlation of HLA matching with kidney graft survival in patients with or without cyclosporine treatment: For the Collaborative Transplant Study,” Transplantation, vol. 40, no. 3, p. 240, 1985, doi:
10.1097/00007890-198509000-00003.
[119]
G. Opelz and B. Döhler,
“Effect of human leukocyte antigen compatibility on kidney graft survival: Comparative analysis of two decades,” Transplantation, vol. 84, no. 2, pp. 137–143, 2007, doi:
10.1097/01.tp.0000269725.74189.b9.
[120]
P. J. Morris, R. J. Johnson, S. V. Fuggle, M. A. Belger, and J. D. Briggs,
“Analysis of factors that affect outcome of primary cadaveric renal transplantation in the UK. HLA task force of the kidney advisory group of the United Kingdom transplant support service authority (UKTSSA),” The Lancet, vol. 354, no. 9185, pp. 1147–1152, 1999, doi:
10.1016/s0140-6736(99)01104-6.
[121]
J. Cicciarelli, P. I. Terasaki, and M. R. Mickey,
“The effect of zero HLA class I and II mismatching in cyclosporine-treated kidney transplant patients,” Transplantation, vol. 43, no. 5, pp. 636–640, 1987, doi:
10.1097/00007890-198705000-00006.
[122]
A. Ting and P. J. Morris,
“The role of HLA matching in renal transplantation,” Tissue Antigens, vol. 25, no. 5, pp. 225–234, 1985, doi:
10.1111/j.1399-0039.1985.tb00445.x.
[123]
V. C. Joysey,
“Tissue typing policy,” in
Transplantation, G. R. D. Catto, Ed., Dordrecht, 1989, pp. 59–93. doi:
10.1007/978-94-009-0855-0_3.
[124]
J. Thorogood
et al.,
“The effect of HLA matching on kidney graft survival in separate posttransplantation intervals,” Transplantation, vol. 50, no. 1, p. 146, 1990, doi:
10.1097/00007890-199007000-00027.
[125]
J. de Meester and G. G. Persijn,
“Allocation of cadaver organs to transplant recipients in Eurotransplant: Principles and policies, anno 1998,” in
Organ Allocation: Proceedings of the 30th Conference on Transplantation and Clinical Immunology, 2–4 June, 1998, J. L. Touraine, J. Traeger, H. Bétuel, J. M. Dubernard, J. P. Revillard, and C. Dupuy, Eds., Dordrecht, 1998, pp. 61–66. doi:
10.1007/978-94-011-4984-6_8.
[126]
T. Wujciak and G. Opelz,
“A proposal for improved cadaver kidney allocation,” Transplantation, vol. 56, no. 6, pp. 1513–1517, 1993, doi:
10.1097/00007890-199312000-00044.
[127]
G. Opelz and T. Wujciak,
“What to expect from a good kidney allocation system,” in
Organ allocation: Proceedings of the 30th conference on transplantation and clinical immunology, 2–4 june, 1998, J. L. Touraine, J. Traeger, H. Bétuel, J. M. Dubernard, J. P. Revillard, and C. Dupuy, Eds., Dordrecht, 1998, pp. 57–60. doi:
10.1007/978-94-011-4984-6_7.
[128]
J. de Meester, G. G. Persijn, F. H. J. Claas, and U. Frei,
“In the queue for a cadaver donor kidney transplant: New rules and concepts in the Eurotransplant,” Nephrology Dialysis Transplantation, vol. 15, no. 3, pp. 333–338, 2000, doi:
10.1093/ndt/15.3.333.
[129]
P. Vereerstraeten, D. Abramowicz, L. De Pauw, and P. Kinnaert,
“Experience with the Wujciak-Opelz allocation system in a single center: An increase in HLA-DR mismatching and in early occurring acute rejection episodes,” Transplant International, vol. 11, no. 5, pp. 378–381, 1998, doi:
10.1007/s001470050161.
[130]
I. I. N. Doxiadis
et al.,
“Simpler and equitable allocation of kidneys from postmortem donors primarily based on full HLA-DR compatibility,” Transplantation, vol. 83, no. 9, p. 1207, 2007, doi:
10.1097/01.tp.0000261108.27421.bc.
[131]
M. B. A. Heemskerk
et al.,
“Regional kidney allocation based only on full HLA-DR compatibility is not feasible,” Transplantation, vol. 88, no. 4, p. 600, 2009, doi:
10.1097/TP.0b013e3181b16174.
[132]
T. Wujciak and G. Opelz,
“Matchability as an important factor for kidney allocation according to the HLA match,” Transplantation Proceedings, vol. 29, no. 1–2, pp. 1403–1405, 1997, doi:
10.1016/s0041-1345(96)00610-0.
[133]
C. Süsal and C. Morath,
“Virtual PRA replaces traditional pra: Small change but significantly more justice for sensitized patients,” Transplant International, vol. 28, no. 6, pp. 708–709, 2015, doi:
10.1111/tri.12572.
[134]
M. Ziemann
et al.,
“Unacceptable human leukocyte antigens for organ offers in the era of organ shortage: Influence on waiting time before kidney transplantation,” Nephrology Dialysis Transplantation, vol. 32, no. 5, pp. 880–889, 2017, doi:
10.1093/ndt/gfw462.
[135]
D. Zecher
et al.,
“Impact of sensitization on waiting time prior to kidney transplantation in Germany,” Transplantation, vol. 106, no. 12, p. 2448, 2022, doi:
10.1097/TP.0000000000004238.
[136]
R. Patel and P. I. Terasaki,
“Significance of the positive crossmatch test in kidney transplantation,” The New England Journal of Medicine, vol. 280, no. 14, pp. 735–739, 1969, doi:
10.1056/NEJM196904032801401.
[137]
F. H. J. Claas and J. J. van Rood,
“The hyperimmunized patient: From sensitization toward transplantation,” Transplant International, vol. 1, no. 2, pp. 53–57, 1988, doi:
10.1007/bf00353819.
[138]
S. Heidt, M. D. Witvliet, G. W. Haasnoot, and F. H. J. Claas,
“The 25th anniversary of the Eurotransplant Acceptable Mismatch program for highly sensitized patients,” Transplant Immunology, vol. 33, no. 2, pp. 51–57, 2015, doi:
10.1016/j.trim.2015.08.006.
[140]
N. Mamode
et al.,
“European guideline for the management of kidney transplant patients with HLA antibodies: By the European society for organ transplantation working group,” Transplant International, vol. 35, 2022, doi:
10.3389/ti.2022.10511.
[141]
P. Amico, G. Hönger, M. Mayr, J. Steiger, H. Hopfer, and S. Schaub,
“Clinical relevance of pretransplant donor-specific HLA antibodies detected by single-antigen flow-beads,” Transplantation, vol. 87, no. 11, pp. 1681–1688, 2009, doi:
10.1097/tp.0b013e3181a5e034.
[142]
W. R. Mulley and J. Kanelles,
“Understanding crossmatch testing in organ transplantation: A case-based guide for the general nephrologist,” Nephrology, vol. 16, no. 2, pp. 125–133, 2011, doi:
10.1111/j.1440-1797.2010.01414.x.
[143]
J. M. A. Smits, G. G. Persijn, J. C. van Houwelingen, F. H. J. Claas, and U. Frei,
“Evaluation of the Eurotransplant Senior Program. The results of the first year,” American Journal of Transplantation, vol. 2, no. 7, pp. 664–670, 2002, doi:
10.1034/j.1600-6143.2002.20713.x.
[144]
U. Frei
et al.,
“Prospective age-matching in elderly kidney transplant recipients - a 5-year analysis of the Eurotransplant Senior Program,” American Journal of Transplantation, vol. 8, no. 1, pp. 50–57, 2008, doi:
10.1111/j.1600-6143.2007.02014.x.
[145]
J. de Fijter
et al.,
“A paired-kidney allocation study found superior survival with HLA-DR compatible kidney transplants in the Eurotransplant Senior Program,” Kidney International, vol. 104, no. 3, pp. 552–561, 2023, doi:
10.1016/j.kint.2023.05.025.
[146]
B. Kolbrink
et al.,
“Allocation rules and age-dependent waiting times for kidney transplantation,” Deutsches Ärzteblatt international, 2024, doi:
10.3238/arztebl.m2024.0137.
[147]
B. Audry
et al.,
“The new French kidney allocation system for donations after brain death: Rationale, implementation, and evaluation,” American Journal of Transplantation, vol. 22, no. 12, pp. 2855–2868, 2022, doi:
10.1111/ajt.17180.
[148]
C. J. E. Watson, R. J. Johnson, and L. Mumford,
“Overview of the evolution of the UK kidney allocation schemes,” Current Transplantation Reports, vol. 7, no. 2, pp. 140–144, 2020, doi:
10.1007/s40472-020-00270-6.
[149]
A. K. Israni
et al.,
“New national allocation policy for deceased donor kidneys in the United States and possible effect on patient outcomes,” Journal of the American Society of Nephrology, vol. 25, no. 8, pp. 1842–1848, 2014, doi:
10.1681/ASN.2013070784.
[150]
F. A. von Samson-Himmelstjerna, B. Kolbrink, K. Budde, R. Schmitt, and K. Schulte,
“Continuous donor-recipient age matching: A chance for kidney allocation in the Eurotransplant region,” American Journal of Transplantation, 2024, doi:
10.1016/j.ajt.2024.11.022.
[151]
D. A. Wu, C. J. Watson, J. A. Bradley, R. J. Johnson, J. L. Forsythe, and G. C. Oniscu,
“Global trends and challenges in deceased donor kidney allocation,” Kidney International, vol. 91, no. 6, pp. 1287–1299, 2017, doi:
10.1016/j.kint.2016.09.054.
[152]
H. C. de Ferrante
et al.,
“Immunized patients face reduced access to transplantation in the Eurotransplant Kidney Allocation System,” Transplantation, vol. 107, no. 10, pp. 2247–2254, 2023, doi:
10.1097/TP.0000000000004687.
[153]
S. Heidt, G. W. Haasnoot, M. J. H. van der Linden-van Oevelen, and F. H. J. Claas,
“Highly sensitized patients are well served by receiving a compatible organ offer based on acceptable mismatches,” Frontiers in Immunology, vol. 12, 2021, doi:
10.3389/fimmu.2021.687254.
[154]
G. Putzer
et al.,
“Solid organ donation and transplantation activity in the Eurotransplant area during the first year of COVID-19,” Transplantation, vol. 106, no. 7, pp. 1450–1454, 2022, doi:
10.1097/TP.0000000000004158.
[155]
D. G. Altman and P. Royston,
“The cost of dichotomising continuous variables,” British Medical Journal, vol. 332, no. 7549, p. 1080, 2006, doi:
10.1136/bmj.332.7549.1080.
[156]
P. Vereerstraeten, D. Abramowicz, M. Andrien, E. Dupont, L. De Pauw, and P. Kinnaert,
“Allocation of cadaver kidneys according to HLA-DR matching alone would result in optimal graft outcome in most recipients,” Transplantation Proceedings, vol. 31, no. 1–2, pp. 739–741, 1999, doi:
10.1016/s0041-1345(98)01748-5.
[157]
J. P. Roberts
et al.,
“Effect of changing the priority for HLA matching on the rates and outcomes of kidney transplantation in minority groups,” New England Journal of Medicine, vol. 350, no. 6, pp. 545–551, 2004, doi:
10.1056/nejmoa025056.
[158]
R. J. Johnson
et al.,
“Factors influencing outcome after deceased heart beating donor kidney transplantation in the United Kingdom: An evidence base for a new national kidney allocation policy,” Transplantation, vol. 89, no. 4, pp. 379–386, 2010, doi:
10.1097/TP.0b013e3181c90287.
[159]
C. Süsal
et al.,
“Should kidney allografts from old donors be allocated only to old recipients?” Transplant International, vol. 33, no. 8, pp. 849–857, 2020, doi:
10.1111/tri.13628.
[160]
M. Niemann, N. Lachmann, K. Geneugelijk, and E. Spierings,
“Computational Eurotransplant kidney allocation simulations demonstrate the feasibility and benefit of T-cell epitope matching,” PLOS Computational Biology, vol. 17, no. 7, p. e1009248, 2021, doi:
10.1371/journal.pcbi.1009248.
[161]
T. Wujciak and G. Opelz, “Computer analysis of cadaver kidney allocation procedures,” Transplantation, vol. 55, no. 3, p. 516, 1993.
[162]
A. Israni
et al.,
“New kidney and pancreas allocation policy: Moving to a circle as the first unit of allocation,” Journal of the American Society of Nephrology, vol. 32, no. 7, pp. 1546–1550, 2021, doi:
10.1681/ASN.2020121679.
[163]
M. A. Mankowski
et al.,
“Accelerating kidney allocation: Simultaneously expiring offers,” American Journal of Transplantation, vol. 19, no. 11, pp. 3071–3078, 2019, doi:
10.1111/ajt.15396.
[165]
L. Mumford and C. J. Watson,
“Working towards a new deceased donor kidney offering scheme in the UK,” Transplantation, p. S153, 2018, doi:
10.1097/01.tp.0000542784.78359.71.
[171]
D. Lopes
et al.,
“Effect of different sensitization events on HLA alloimmunization in kidney transplant candidates,” Transplantation Proceedings, vol. 47, no. 4, pp. 894–897, 2015, doi:
10.1016/j.transproceed.2015.03.014.
[172]
D. P. Lucas, M. S. Leffell, and A. A. Zachary,
“Differences in immunogenicity of HLA antigens and the impact of cross-reactivity on the humoral response,” Transplantation, vol. 99, no. 1, pp. 77–85, 2015, doi:
10.1097/tp.0000000000000355.
[173]
C. Süsal
et al.,
“Algorithms for the determination of unacceptable HLA antigen mismatches in kidney transplant recipients,” Tissue Antigens, vol. 82, no. 2, pp. 83–92, 2013, doi:
10.1111/tan.12137.
[174]
M. Ziemann
et al.,
“Determination of unacceptable HLA antigen mismatches in kidney transplant recipients,” HLA, vol. 100, no. 1, pp. 3–17, 2022, doi:
10.1111/tan.14521.
[175]
D. Isaacson, J. D. Schold, M. W. Gmeiner, H. C. Copley, V. Kosmoliaptsis, and A. R. Tambur,
“HLA-DQ mismatches lead to more unacceptable antigens, greater sensitization, and increased disparities in repeat transplant candidates,” Journal of the American Society of Nephrology, vol. 33, no. 12, pp. 2293–2305, 2022, doi:
10.1681/asn.2022030296.
[176]
S. Heidt
et al.,
“Introduction of the donor center virtual crossmatch in Eurotransplant,” HLA, vol. 104, no. 2, 2024, doi:
10.1111/tan.15653.
[177]
D. E. Stewart, A. Y. Kucheryavaya, N. L. Reinsmoen, and J. J. Friedewald,
“Smoothing it out: Creating a sliding scale for assigning CPRA-based allocation points,” American Journal of Transplantation, vol. 12, no. s3, p. 128, 2012, doi:
10.1111/j.1600-6143.2012.04112.x.
[178]
J. Waiser
et al.,
“Age-matching in renal transplantation,” Nephrology Dialysis Transplantation, vol. 15, no. 5, pp. 696–700, 2000, doi:
10.1093/ndt/15.5.696.
[179]
M. Pippias
et al.,
“Young deceased donor kidneys show a survival benefit over older donor kidneys in transplant recipients aged 20–50 years: A study by the ERA–EDTA registry,” Nephrology Dialysis Transplantation, vol. 35, no. 3, pp. 534–543, 2020, doi:
10.1093/ndt/gfy268.
[180]
F. J. van Ittersum
et al.,
“Increased risk of graft failure and mortality in Dutch recipients receiving an expanded criteria donor kidney transplant,” Transplant International, vol. 30, no. 1, pp. 14–28, 2017, doi:
10.1111/tri.12863.
[181]
M. Coemans
et al.,
“A competing risks model to estimate the risk of graft failure and patient death after kidney transplantation using continuous donor-recipient age combinations,” American Journal of Transplantation, vol. 0, no. 0, 2024, doi:
10.1016/j.ajt.2024.07.029.
[182]
D. S. Keith, A. Demattos, M. Golconda, J. Prather, and D. Norman,
“Effect of donor recipient age match on survival after first deceased donor renal transplantation,” Journal of the American Society of Nephrology, vol. 15, no. 4, p. 1086, 2004, doi:
10.1097/01.ASN.0000119572.02053.F2.
[183]
L. C. de Wreede, M. Fiocco, and H. Putter,
“Mstate: An R package for the analysis of competing risks and multi-state models,” Journal of Statistical Software, vol. 38, pp. 1–30, 2011, doi:
10.18637/jss.v038.i07.
[184]
A. R. Tambur, V. Kosmoliaptsis, F. H. J. Claas, R. B. Mannon, P. Nickerson, and M. Naesens,
“Significance of HLA-DQ in kidney transplantation: Time to reevaluate human leukocyte antigen–matching priorities to improve transplant outcomes? An expert review and recommendations,” Kidney International, vol. 100, no. 5, pp. 1012–1022, 2021, doi:
10.1016/j.kint.2021.06.026.
[185]
R. G. Sargent,
“Verification and validation of simulation models: An advanced tutorial,” in
2020 Winter Simulation Conference (WSC), Orlando, FL, USA: INFORMS, 2020, pp. 16–29. doi:
10.1109/WSC48552.2020.9384052.
[186]
A. Luca
et al.,
“An integrated MELD model including serum sodium and age improves the prediction of early mortality in patients with cirrhosis,” Liver Transplantation, vol. 13, no. 8, pp. 1174–1180, 2007, doi:
10.1002/lt.21197.
[187]
D. M. Heuman
et al.,
“MELD-XI: A rational approach to "sickest first" liver transplantation in cirrhotic patients requiring anticoagulant therapy,” Liver Transplantation, vol. 13, no. 1, pp. 30–37, 2006, doi:
10.1002/lt.20906.
[188]
J. Neuberger
et al.,
“Selection of patients for liver transplantation and allocation of donated livers in the UK,” Gut, vol. 57, no. 2, pp. 252–257, 2007, doi:
10.1136/gut.2007.131730.
[189]
U. Kartoun
et al.,
“The MELD-Plus: A generalizable prediction risk score in cirrhosis,” PLOS ONE, vol. 12, no. 10, p. e0186301, 2017, doi:
10.1371/journal.pone.0186301.
[190]
N. Sarmast
et al.,
“Model for End-Stage Liver Disease-lactate and prediction of inpatient mortality in patients with chronic liver disease,” Hepatology, vol. 72, no. 5, pp. 1747–1757, 2020, doi:
10.1002/hep.31199.
[191]
B. F. J. Goudsmit
et al.,
“Validation of the Model for End-Stage Liver Disease sodium (MELD-Na) score in the Eurotransplant region,” American Journal of Transplantation, vol. 21, no. 1, pp. 229–240, 2020, doi:
10.1111/ajt.16142.
[193]
M. A. Mankowski
et al.,
“Balancing equity and human leukocyte antigen matching in deceased-donor kidney allocation with eplet mismatch,” American Journal of Transplantation, 2024, doi:
10.1016/j.ajt.2024.11.030.
[194]
G. E. Karahan, G. W. Haasnoot, and S. Heidt,
“Equitable allocation through human leukocyte antigen eplet matching: A promising strategy with several challenges,” American Journal of Transplantation, 2025, doi:
10.1016/j.ajt.2025.01.028.
[195]
N. Tayob and S. Murray,
“Statistical consequences of a successful lung allocation system - recovering information and reducing bias in models for urgency,” Statistics in Medicine, vol. 36, no. 15, pp. 2435–2451, 2017, doi:
10.1002/sim.7283.
[196]
J. Xie, J. Shults, J. Peet, D. Stambolian, and M. F. Cotch,
“Quasi-least squares with mixed linear correlation structures,” Statistics and its interface, vol. 3, no. 2, pp. 223–234, 2010.
[197]
J. Shults and J. M. Hilbe, Quasi-Least Squares Regression. in Monographs on statistics & applied probability. Philadelphia, PA: Chapman & Hall/CRC, 2014.